
The GriPhyN Virtual Data System Properties

Property Documentation

automatically generated at

2005-01-25 13:33

Contents

1 Introduction 4

2 Basics 5
2.1 vds.home . 5

3 Directory Location Properties 5
3.1 vds.properties . 5
3.2 vds.user.properties . 5
3.3 vds.home.datadir . 5
3.4 vds.home.sysconfdir . 6
3.5 vds.home.sharedstatedir . 6
3.6 vds.home.localstatedir . 6

4 Simple File Location Properties 6
4.1 vds.schema.vdl . 6
4.2 vds.schema.dax . 7
4.3 vds.schema.ivr . 7
4.4 vds.db.pool . 7
4.5 vds.db.tc . 7
4.6 vds.pool.file . 8
4.7 vds.tc.file . 8
4.8 vds.db.rc . 8

Contents 2

5 Chimera Vdc Access 9
5.1 vds.db.vdc.schema . 9
5.2 vds.db.vdc.schema.xml.url . 9
5.3 vds.db.vdc.schema.file.store . 10
5.4 vds.db.ptc.schema . 10
5.5 vds.db.*.driver . 10
5.6 vds.db.*.driver.url . 11
5.7 vds.db.*.driver.user . 11
5.8 vds.db.*.driver.password . 11
5.9 vds.db.*.driver.* . 12

6 Pegasus Replica Management Properties 13
6.1 vds.replica.mode . 13
6.2 vds.rls.url . 13
6.3 vds.rls.exit . 14
6.4 vds.rls.query . 14
6.5 vds.rls.query.attrib . 14

7 Pegasus Site Selection Properties 15
7.1 vds.site.selector.mode . 15
7.2 vds.site.selector . 15
7.3 vds.site.selector.path . 16
7.4 vds.site.selector.env.* . 16
7.5 vds.site.selector.timeout . 16
7.6 vds.site.selector.keep.tmp . 17

8 Pegasus In Action 17
8.1 vds.pool.mode . 17
8.2 vds.tc.mode . 18
8.3 vds.transfer.mode . 19
8.4 vds.transfer.mode.links . 20
8.5 vds.transfer.mode.force . 20
8.6 vds.transfer.throttle.processes . 20
8.7 vds.transfer.throttle.streams . 21
8.8 vds.transfer.force . 21
8.9 vds.transfer.thirdparty.pools . 21
8.10 vds.exitcode.mode . 22
8.11 vds.exitcode.arguments . 22
8.12 vds.dir.exec . 22
8.13 vds.dir.storage . 23
8.14 vds.dir.create.mode . 23
8.15 vds.lsf.projects . 23

Contents 3

8.16 vds.scheduler.remote.projects . 24
8.17 vds.scheduler.remote.queues . 24
8.18 vds.scheduler.remote.maxwalltimes . 24
8.19 vds.pegasus.kickstart-condor . 24
8.20 vds.pegasus.condor-bin . 25
8.21 vds.pegasus.condor-config . 25
8.22 vds.scheduler.condor.start . 25
8.23 vds.scheduler.condor.bin . 25
8.24 vds.scheduler.condor.config . 26
8.25 vds.scheduler.condor.release . 26
8.26 vds.scheduler.condor.remove . 26
8.27 vds.scheduler.condor.retry . 26
8.28 vds.scheduler.condor.output.stream . 27
8.29 vds.scheduler.condor.error.stream . 27
8.30 vds.giis.host . 27
8.31 vds.giis.dn . 28
8.32 vds.log4j.log . 28
8.33 vds.loggerservice.url . 28

9 Chimera In Action 29
9.1 vds.log.* . 29
9.2 vds.verbose . 29

10 Interface To Dagman 29
10.1 vds.dagman.maxpre . 29
10.2 vds.dagman.maxpost . 30
10.3 vds.dagman.maxjobs . 30
10.4 vds.dagman.nofity . 30
10.5 vds.dagman.verbose . 31

Index 32

1 Introduction 4

1 Introduction

This file will report the majority of the settable properties, and their respective default values. Please refer
to the user guide for a more in-depth discussion of the configuration options. Please note that the values
rely on proper capitalization, unless explicitely noted otherwise.

Some properties rely with their default on the value of other properties. As a notation, the curly braces
refer to the value of the named property. For instance, ${vds.home} means that the value depends on
the value of the vds.home property plus any noted additions. You can use this notation to refer to other
properties, though the extend of the subsitutions are limited. Usually, you want to refer to a set of the
standard system properties. Nesting is not allowed. Substitutions will only be done once.

There is a priority handling to properties. By default, the average user does not need to worry about the
priorities. However, it is good to know the details of when which property applies, and how one property
is able to overwrite another.

1. Property definitions in the system property file, usually found in ${vds.home.sysconfdir}/properties,
have the lowest priority. These properties are expected to be set up by the submit host’s administra-
tor.

2. The properties defined in the user property file ${user.home}/.chimerarc have higher priority. These
can overwrite settings found in the system’s properties. A set of sensible property values to set on a
production system is shown below.

3. Commandline properties have the highest priority. Each commandline property is introduced by a
-D argument. Note that these arguments are parsed by the shell wrapper, and thus the -D arguments
must be the first arguments to any command. Commandline properties are useful for debugging
purposes.

The following example provides a sensible set of properties to be set by the user property file. These
properties use mostly non-default settings. It is an example only, and will not work for you:

vds.db.vdc.schema ChunkSchema
vds.db.ptc.schema InvocationSchema
vds.db.*.driver Postgres
vds.db.*.driver.url jdbc:postgresql:${user.name}
vds.db.*.driver.user ${user.name}
vds.db.*.driver.password XXXXXXXX
vds.rls.url rls://sheveled.mcs.anl.gov
vds.replica.mode rls
vds.exitcode.mode all
vds.transfer.mode single
vds.pool.mode single
vds.pool.file ${vds.home}/contrib/Euryale/Grid3/pool.config

If you are in doubt which properties are actually visible, a sample application calledtestprops dumps
all properties after reading them.

2 Basics 5

2 Basics

2.1 vds.home

Systems all
Type directory location string
Default ""$VDS_HOME""

The property vds.home cannot be set in the property file. Any of the shell wrapper script for the applica-
tions will set this property from the value of the environment variable $VDS_HOME.

3 Directory Location Properties

3.1 vds.properties

Systems all
Type file location string
Default ${vds.home.sysconfdir}/properties

The system-wide properties file will be looked for in its default place. It will usually reside in $VDS_HOME/etc
as file named properties.

3.2 vds.user.properties

Systems all
Type file location string
Default ${user.home}/.chimerarc

Each user can overwrite the system-wide properties with his or her own definitions. The user properties
rely on the system’s notion of the user home directory, as reflected in the JRE system properties. In
the user’s home directory, a file .chimerarc will be taken to contain user property definitions. Note that
${user.home} is a system property.

3.3 vds.home.datadir

Systems all
Type directory location string
Default ${vds.home}/share

The datadir directory contains broadly visiable and possilby exported configuration files that rarely change.
This directory is currently unused.

4 Simple File Location Properties 6

3.4 vds.home.sysconfdir

Systems all
Type directory location string
Default ${vds.home}/etc

The system configuration directory contains configuration files that are specific to the machine or instal-
lation, and that rarely change. This is the directory where the XML schema definition copies are stored,
and where the base pool configuration file is stored.

[NOTE to Gaurang: the dyanmic poolcfg xml file should be in localstate]

3.5 vds.home.sharedstatedir

Systems all
Type directory location string
Default ${vds.home}/com

Frequently changing files that are broadly visible are stored in the shared state directory. This is currently
unused.

3.6 vds.home.localstatedir

Systems all
Type directory location string
Default ${vds.home}/var

Frequently changing files that are specific to a machine and/or installation are stored in the local state
directory. This directory is being used for the textual transformation catalog, file-based VDCs, and the
file-based replica catalog of the shell planner.

4 Simple File Location Properties

4.1 vds.schema.vdl

Systems Chimera, VDC
Type XML schema file location string
Default ${vds.home.sysconfdir}/vds-1.21.xsd

This file is a copy of the XML schema that describes VDLx files. VDLx files and fragments are used
in various places throughout the abstract planning process. Providing a copy of the schema enables the
parser to use the local copy instead of reaching out to the internet, and obtaining the latest version from
the GriPhyN website dynamically.

4 Simple File Location Properties 7

4.2 vds.schema.dax

Systems all
Type XML schema file location string
Value[0] ${vds.home.sysconfdir}/dax-1.5.xsd
Value[1] ${vds.home.sysconfdir}/dax-1.6.xsd
Value[2] ${vds.home.sysconfdir}/dax-1.7.xsd
Default ${vds.home.sysconfdir}/dax-1.7.xsd

This file is a copy of the XML schema that describes abstract DAG files that are the result of the abstract
planning process, and input into any concrete planning. Providing a copy of the schema enables the parser
to use the local copy instead of reaching out to the internet, and obtaining the latest version from the
GriPhyN website dynamically.

4.3 vds.schema.ivr

Systems all
Type XML schema file location string
Default ${vds.home.sysconfdir}/iv-1.2.xsd

This file is a copy of the XML schema that describes invocation record files that are the result of the a
grid launch in a remote or local site. Providing a copy of the schema enables the parser to use the local
copy instead of reaching out to the internet, and obtaining the latest version from the GriPhyN website
dynamically.

4.4 vds.db.pool

Moved to vds.pool.file, section 4.6 (page 8)

This property name was deprecated, and will eventually be phased out. Please use the new name in the
future.

4.5 vds.db.tc

Moved to vds.tc.file, section 4.7 (page 8)

This property name was deprecated, and will eventually be phased out. Please use the new name in the
future.

4 Simple File Location Properties 8

4.6 vds.pool.file

Systems Pegasus
Type file location string
Default ${vds.home.sysconfdir}/pool.config
Old name vds.db.pool
See also vds.pool.mode, section 8.1 (page 17)

Running things on the grid requires an extensive description of the capabilities of each compute cluster,
commonly termed "pool". This property describes the location of the file that contains such a pool de-
scription. As the format is currently in flow, please refer to the userguide and Pegasus for details which
format is expected.

4.7 vds.tc.file

Systems all
Type file location string
Default ${vds.home.localstatedir}/tc.data
Old name vds.db.tc
See also vds.tc.mode, section 8.2 (page 18)

The transformation catalog is a 3+ column textual file that describes in a simple column based format the
mapping from a logical transformation for each pool to the physical application, and optional environ-
ment settings. All concrete planners use this repository to map the lTR from the abstract DAX into an
application invocation. Refer to the user guide for details.

4.8 vds.db.rc

System Chimera shell planner
Type file-based RC file location string
Default ${vds.home.localstatedir}/rc.data

The shell planner that comes with Chimera completely by-passes any replica management catalogs that
come with Pegasus. The shell planner uses a simple three column textual file to store the mapping of
LFNs to PFNs and pools.

5 Chimera Vdc Access 9

5 Chimera Vdc Access

5.1 vds.db.vdc.schema

System Chimera VDC
Type Java class name
Value[0] SingleFileSchema
Value[1] ChunkSchema
Value[2] AnnotationSchema
Value[3] NXDSchema
Default org.griphyn.vdl.dbschema.SingleFileSchema
See also vds.db.*.driver, section 5.5 (page 10)

This property denotes the schema that is being used to access a VDC. The VDC is a multi-layer architec-
ture, with the dbschema sitting on top of the dbdrivers. Some schemas, like the default schema, do not
access the driver level at all.

Currently available are only SingleFileSchema and ChunkSchema. These are names of Java classes. If
no absolute Java classname is given, "org.griphyn.vdl.dbschema." is prepended. Thus, by deriving from
the DatabaseSchema API, and implementing the VDC interface, users can provide their own classes here.
Anything further properties in "vds.db.vdc.schema.*" will be copied into the schema properties, and thus
made available to the schema.

SingleFileSchema This schema uses a file-based VDC. It is the default, as files are thought to be
always available.

ChunkSchema This is a small VDC schema that uses an underlying rDBMS. Data outside the keys is
stored in XML chunks, thus the name.

AnnotationSchema This is an extension of the ChunkSchema by providing annotation to filenames,
transformations, derivations, formal arguments.

NXDSchema This is a schema storing XML into an native XML database. The database driver proper-
ties are not used.

5.2 vds.db.vdc.schema.xml.url

System Chimera VDC, SingleFileSchema, ChunkSchema
Type VDLx XML Schema location
Default ${vds.schema.vdl}

Various schemas manipulate VDLx internally, and need the knowledge of the schemas location to con-
struct their parsers. This schema property enables users to provide backward compatible parsers for VDC
data independent of the new data being read from files.

5 Chimera Vdc Access 10

5.3 vds.db.vdc.schema.file.store

System Chimera VDC, SingleFileSchema
Type file location string
Default ${vds.home.localstatedir}/vdc.db

The VDC can be stored in a single file, which is the default mode of operation. This property determines
the basename of the file. Extensions allow for a degree of rollbacks.

5.4 vds.db.ptc.schema

System Chimera Provenance Tracking Catalog (PTC)
Type Java class name
Value[0] InvocationSchema
Value[1] NXDInvSchema
Default (no default)
See also vds.db.*.driver, section 5.5 (page 10)

This property denotes the schema that is being used to access a PTC. The PTC is usually not a standard
installation. If you use a database backend, you most likely have a schema that supports PTCs. By default,
no PTC will be used.

Currently available is only InvocationSchema, if you want to store provenance tracking records. Beware,
this can become a lot of data. The values are names of Java classes. If no absolute Java classname is
given, "org.griphyn.vdl.dbschema." is prepended. Thus, by deriving from the DatabaseSchema API, and
implementing the PTC interface, users can provide their own classes here. Anything further properties in
"vds.db.ptc.schema.*" will be copied into the schema properties, and thus made available to the schema.

Alternatively, if you use a native XML database like eXist, you can store data using the NXDInvSchema.
This will avoid using any of the other database driver properties.

5.5 vds.db.*.driver

System Chimera VDC
Type Java class name
Value[0] Postgres
Value[1] MySQL
Value[2] SQLServer2000 (not yet implemented!)
Value[3] Oracle (not yet implemented!)
Default (no default)
See also vds.db.vdc.schema, section 5.1 (page 9)
See also vds.db.ptc.schema, section 5.4 (page 10)

5 Chimera Vdc Access 11

The database driver class is dynamically loaded, as required by the schema. Currently, only PostGreSQL
7.3 and MySQL 4.0 are supported. Their respective JDBC3 driver is provided as part and parcel of the
GVDS.

A user may provide their own implementation, derived from org.griphyn.vdl.dbdriver.DatabaseDriver, to
talk to a database of their choice.

For each schema in vdc, ptc and tc, a driver is instantiated separately, which has the same prefix as the
schema. This may result in multiple connections to the database backend. As fallback, the schema "*"
driver is attempted.

5.6 vds.db.*.driver.url

System Chimera VDC
Type JDBC database URI string
Default (no default)
Example jdbc:postgresql:${user.name}

Each database has its own string to contact the database on a given host, port, and database. Although most
driver URLs allow to pass arbitrary arguments, please use the vds.db.schema.driver.* keys or vds.db.*.driver.*
to preload these arguments. THE URL IS A MANDATORY PROPERTY FOR ANY DBMS BACKEND.

Postgres : jdbc:postgresql:[//hostname[:port]/]database
MySQL : jdbc:mysql://[hostname[:port]]/database
SQLServer: jdbc:microsoft:sqlserver://hostname:port
Oracle : jdbc:oracle:thin:[user/password]@//host[:port]/service

5.7 vds.db.*.driver.user

System Chimera VDC
Type string
Default (no default)
Example ${user.name}

In order to access a database, you must provide the name of your account on the DBMS. This property is
database-independent. THIS IS A MANDATORY PROPERTY FOR MANY DBMS BACKENDS.

5.8 vds.db.*.driver.password

System Chimera VDC
Type string
Default (no default)
Example ${user.name}

5 Chimera Vdc Access 12

In order to access a database, you must provide an optional password of your account on the DBMS. This
property is database-independent. THIS IS A MANDATORY PROPERTY, IF YOUR DBMS BACKEND
ACCOUNT REQUIRES A PASSWORD.

5.9 vds.db.*.driver.*

System Chimera VDC

Each database has a multitude of options to control in fine detail the further behaviour. You may want
to check the JDBC3 documentation of the JDBC driver for your database for details. The keys will be
passed as part of the connect properties by stripping the "vds.db.driver." prefix from them.

Postgres 7.3 parses the following properties:

vds.db.*.driver.user
vds.db.*.driver.password
vds.db.*.driver.PGHOST
vds.db.*.driver.PGPORT
vds.db.*.driver.charSet
vds.db.*.driver.compatible

MySQL 4.0 parses the following properties:

vds.db.*.driver.user
vds.db.*.driver.password
vds.db.*.driver.databaseName
vds.db.*.driver.serverName
vds.db.*.driver.portNumber
vds.db.*.driver.socketFactory
vds.db.*.driver.strictUpdates
vds.db.*.driver.ignoreNonTxTables
vds.db.*.driver.secondsBeforeRetryMaster
vds.db.*.driver.queriesBeforeRetryMaster
vds.db.*.driver.allowLoadLocalInfile
vds.db.*.driver.continueBatchOnError
vds.db.*.driver.pedantic
vds.db.*.driver.useStreamLengthsInPrepStmts
vds.db.*.driver.useTimezone
vds.db.*.driver.relaxAutoCommit
vds.db.*.driver.paranoid
vds.db.*.driver.autoReconnect
vds.db.*.driver.capitalizeTypeNames
vds.db.*.driver.ultraDevHack
vds.db.*.driver.strictFloatingPoint
vds.db.*.driver.useSSL
vds.db.*.driver.useCompression
vds.db.*.driver.socketTimeout
vds.db.*.driver.maxReconnects
vds.db.*.driver.initialTimeout
vds.db.*.driver.maxRows
vds.db.*.driver.useHostsInPrivileges

6 Pegasus Replica Management Properties 13

vds.db.*.driver.interactiveClient
vds.db.*.driver.useUnicode
vds.db.*.driver.characterEncoding

MS SQL Server 2000 support the following properties (keys are case-insensitive, e.g. both "user" and
"User" are valid):

vds.db.*.driver.User
vds.db.*.driver.Password
vds.db.*.driver.DatabaseName
vds.db.*.driver.ServerName
vds.db.*.driver.HostProcess
vds.db.*.driver.NetAddress
vds.db.*.driver.PortNumber
vds.db.*.driver.ProgramName
vds.db.*.driver.SendStringParametersAsUnicode
vds.db.*.driver.SelectMethod

6 Pegasus Replica Management Properties

6.1 vds.replica.mode

System Pegasus
Type enumeration
Value[0] rls
Default rls

The replica mode controls which replica management mechanism is being employed by Pegasus. The
possible value at present is "rls".

6.2 vds.rls.url

System Pegasus, RLS
Type URI string
Default (no default)

When using the modern RLS replica catalog, the URI to the RLI must be provided to Pegasus to enable it
to look up filenames. There is no default.

6 Pegasus Replica Management Properties 14

6.3 vds.rls.exit

System Pegasus, RLS
Type enumeration
Value[0] error
Value[1] never
Default error

The Cplanner code first queries the RLI to find the LRC urls and then queries each individual LRC’s. If
the mode is set to error (default) then the Cplanner will exit if it encounters any LRC to which it cannot
authenticate or connect. If the mode is set to never the any LRC that cannot be authenticated or connected
to is skipped unless if all of them fail then the CPlanner exits.

6.4 vds.rls.query

System Pegasus, RLS
Type enumeration
Value[0] bulk
Value[1] multiple
Default bulk

The RLS server offers significant performance improvement when being bulk queried for filenames. Alas,
bulk operations are only available starting with version 2.0.5 of the RLS software. The possible values for
this key are "bulk" and "multiple". With the current RLS version being 2.0.7, "bulk" is the default. For
backward compatibility, you can use "multiple".

6.5 vds.rls.query.attrib

System Pegasus, RLS
Type boolean
Value[0] true
Value[1] false
Default false
See also vds.transfer.mode.links, section 8.4 (page 20)
See also vds.rls.query, section 6.4 (page 14)

Pegasus would prefer that each pfn be associated with a pool attribute that lets it associate a pfn with a gvds
pool. This can be used in conjunction with vds.transfer.mode.links and multiple mode of vds.transfer.mode
to create symbolic links to the pfn’s. This is only when a pfn is found to be at the same execution pool
where Pegasus has sceduled the job. A point to be taken care of is that, this should be used if the query
mode to rls is bulk in order to enable bulk query of attributes in RLS. This bulk query of attributes in RLS
is available from version 2.0.9 or later.

7 Pegasus Site Selection Properties 15

7 Pegasus Site Selection Properties

7.1 vds.site.selector.mode

Moved to vds.site.selector, section 7.2 (page 15)

This property name was deprecated, and will eventually be phased out. Please use the new name in the
future.

7.2 vds.site.selector

System Pegasus
Since 1.2.8
Type enumeration
Value[0] Random
Value[1] RoundRobin
Value[2] NonJavaCallout
Default Random

The site selection in Pegasus can be on basis of any of the following strategies.

1. Pegasus assigns jobs randomly amongst the sites that can execute them.

2. Pegasus assigns jobs in a round robin manner amongst the sites that can execute them. Since
each site cannot execute everytype of job, the round robin scheduling is done per level on a sorted
list. The sorting is on the basis of the number of jobs a particular site has been assigned in that
level so far. If a job cannot be run on the first site in the queue (due to no matching entry in the
transformation catalog for the transformation referred to by the job), it goes to the next one and
so on. This implementation defaults to classic round robin in the case where all the jobs in the
workflow can run on all the sites.

3. Pegasus can also callout to an external site selector. In this mode a temporary file is prepared con-
taining the job information that is passed to the site selector as an argument while invoking it. The
path to the site selector is specified by setting the property vds.site.selector.path. The environment
variables that need to be set to run the site selector can be specified using the properties with a
vds.site.selector.env. prefix. The temporary file contains information about the job that needs to be
scheduled. It contains key value pairs with each key value pair being on a new line and separated
by a =.

Currently the following keys are supported by the site selector:

7 Pegasus Site Selection Properties 16

vds_job_name is the unique id of the job in the current workflow.
vds_transformation is the VDLt-style specification of a given transformation, using

the triple of namespace :: logicalname : version.
vds_scheduler_preference denotes a jobmanager, either fork or regular.
vds_exec_pools is a comma separated list of execution pools.
vds_input_files is a comma separated list of logical names of input files for the

jobs. If there are no input files then the value is set to NONE.

7.3 vds.site.selector.path

System Pegasus
Since 1.2.3
Type String

If one calls out to an external site selector using the NonJavaCallout mode, this refers to the path where
the site selector is installed. In case other strategies are used it does not need to be set.

7.4 vds.site.selector.env.*

System Pegasus
Since 1.2.3
Type String

The environment variables that need to be set while callout to the site selector. These are the variables
that the user would set if running the site selector on the command line. The name of the environment
variable is got by stripping the keys of the prefix "vds.site.selector.env." prefix from them. The value of
the environment variable is the value of the property.

e.g vds.site.selector.path.LD_LIBRARY_PATH /globus/lib would lead to the site selector being called
with the LD_LIBRARY_PATH set to /globus/lib.

7.5 vds.site.selector.timeout

System Pegasus
Since 1.3.0
Type non negative integer
Default 60

It sets the number of seconds Pegasus waits to hear back from an external site selector using the NonJava-
Callout interface before timing out.

8 Pegasus In Action 17

7.6 vds.site.selector.keep.tmp

System Pegasus
Since 1.3.2
Type enumeration
Value[0] onerror
Value[1] always
Value[2] never
Default onerror

It determines whether Pegasus deletes the temporary input files that are generated in the temp directory or
not. These temporary input files are passed as input to the external site selectors.

A temporary input file is created for each that needs to be scheduled.

8 Pegasus In Action

8.1 vds.pool.mode

System Pegasus, MDS, PoolConfig
Type enumeration
Value[0] single
Value[1] multiple
Value[2] xml
Default single

The pool.config file is available in two major flavors:

1. The old textual format employs multiple columns in a textual file, see sample.pool.config.old. This
format is DEPRECATED and will be removed in the mid-term future. The odl textual format is
available in two parsing modes for scalability purposes:

a) The "single" modes reads the old format pool.config file once and only once. The data is kept
in memory for better performance. We recommend this mode for pool files with less than 1k
lines.

b) The "multiple" mode reads of the old format pool.config file every time it needs to look up
somethings. Use this mode if you have memory problems, or if you have an unusually huge
pool.config file.

2. The "xml" format is an XML-based file. It is generated using the genpoolconfig client application
program that is shipped with Pegasus. The XML input file for Pegasus can be generated in various
ways, that can be used exclusively or combined at your option:

8 Pegasus In Action 18

a) The pool configuration file can be generated using information that is published in MDS (see
VDS user guide document). This is the recommended way.

b) It can also be published by converting the new, easier to read and modify local multiline pool
config file. An example is provided in sample.pool.config.new. Use this option if you have no
network connectivity, or for tests.

8.2 vds.tc.mode

System Pegasus, TC
Type enumeration
Value[0] single
Value[1] multiple
Value[2] OldFile
Value[3] File
Value[4] Database
Default File
See also vds.db.tc, section 4.5 (page 7)

The Transformation Catalog (TC) is currently a three-column file. Similar to the pool configuration, for
speed and memory consumption, two parse modes are available:

1. In "single", "multiple" and "OldFile" mode, the old TC file is read once and cached in main mem-
ory. This yields a good performance while consuming some memory. We recommend to use this
methods for files with less than 10000 entries.

The old file format consists of for tabulator-separated columns: The resource identifier, the logical
transformation name, the physical installation path to the application, and optional environment
variables or the stringnull . The old format understands the logical transformation specification in
both, the ancient format using underscores ns__id_vs and the modern colonized version ns::id:vs.

The old format has been DEPRECATED. Please use the conversion tool incontrib/tc-converter/tc-old2new
to convert to the new format or run

tc-client -Dvds.tc.mode=single -q B > tc.data.net

2. In "File" mode, the new file format is understood. The file is read and cached in memory. Any mod-
ifications, as adding or deleting, causes an update of the memory and hence to the file underneath.
All queries are done against the memory representation. The new TC file format uses 6 columns:

a) The resource ID is represented in the first column.

b) The logical transformation uses the colonized format ns::name:vs.

c) The path to the application on the system

8 Pegasus In Action 19

d) The installation type is identified by one of the following keywords - all upper case: IN-
STALLED, STATIC_BINARY, DYNAMIC_BINARY, SCRIPT. If not specified, orNULL is
used, the type defaults to INSTALLED.

e) The system is of the format ARCH::OS[:VER:GLIBC]. The Following arch types are un-
derstood: "INTEL32", "INTEL64", "SPARCV7", "SPARCV9". The Following os types are
understood: "LINUX", "SUNOS", "AIX". If unset orNULL, defaults to INTEL32::LINUX.

f) Profiles are written in the format NS::KEY=VALUE,KEY2=VALUE;NS2::KEY3=VALUE3
Multiple key-values for same namespace are seperated by a comma "," and multiple names-
paces are seperated by a semicolon ";". If any of your profile values contains a comma you
must not use the namespace abbreviator.

3. In "Database" mode, the transformation catalog is kept in a relational database. Currently only the
mysql DB is supported correctly. To set up the the database, use the schema in$VDS_HOME/sql/create-my-tc.sql .

Future modifications to the TC may extend the enumeration. To implement your own TC implementation
see org.girphyn.cPlanner.tc.TCMechanism. To load the class set vds.tc.mode to the TC implementation
class.

8.3 vds.transfer.mode

System Pegasus
Type enumeration
Value[0] single
Value[1] multiple
Value[2] T2
Value[3] StorkSingle
Default single

Each job usually has data products that are required to be staged out to a final resting place, or staged to
another job running at a different pool. The transfer mode determines the number of transfer jobs added
to a compute job:

1. In "single" mode each file that needs to be transferred will generate one transfer job. This mode
works well with kickstart, and employs globus-url-copy as transfer agent. It uses two party transfers
based on the assumption that the gridftp server runs on the gatekeeper.

2. In "multiple" mode, all files will be attempted to be transferred with just one transfer job, resulting
in multiple transfers. This mode uses the provided appliation "transfer" that internally invokes
globus-url-copy to transfer each file. "transfer" may not agree with "kickstart", though this is to be
fixed. Files are transferred sequentially, one after the other.

3. In "T2" mode, like the "multiple" mode all files will be attempted to be transfered with just one
transfer job. In addition, T2 can handle conditional transfers, whereby it signals a success in case

8 Pegasus In Action 20

of failures during transfers. The input file for the transfer job that is constructed contains multiple
source and destination urls for the same transfer. The transfer fails only if all pair candidates are
attempted without success.

4. In "StorkSingle" mode, the transfers are scheduled using Stork and the transfer submit files are
generated in stork format. This is an experimental mode that is being tested currently.

Pegasus is researching a new transfer job that will enable multiple transfers in parallel. Further properties
will allow the parallelization to be tuned.

8.4 vds.transfer.mode.links

System Pegasus
Type boolean
Default false
See also vds.transfer.mode, section 8.3 (page 19)
See also vds.transfer.mode.force, section 8.5 (page 20)
See also vds.rls.query.attrib, section 6.5 (page 14)

If this is set, and the transfer mode is set to multiple i.e. using the transfer executable distributed with the
VDS. On setting this property, if Pegasus while fetching data from the RLS sees a pool attribute associated
with the pfn that matches the execution pool on which the data has to be transferred to, Pegasus instead
of the url returned by the RLS replaces it with a file based url. This supposes that the if the pools match
the filesystems are visible to the remote execution directory where input data resides. On seeing both the
source and destination urls as file based url’s the transfer executable spawns a job that creates a symbolic
link by calling ln -s on the remote pool. This ends up bypassing the grid ftp server and reduces the load
on it, and is much faster.

8.5 vds.transfer.mode.force

System Pegasus
Type unknown
Default unknown

This needs to be documented!

8.6 vds.transfer.throttle.processes

System Pegasus
Type integer
Default 4
See also vds.transfer.mode, section 8.3 (page 19)
See also vds.transfer.throttle.streams, section 8.7 (page 21)

8 Pegasus In Action 21

This property is picked up when transfer mode (vds.transfer.mode) is multiple. In this mode, multiple
files are transferred using a transfer executable that comes with the VDS system. This transfer executable
attempts to transfer multiple files by spawning multiple g-u-c processes. By default a maximum of 4
processes are spawned to transfer the files. Using this one can change the number of processes that are
spawned by the transfer executable.

8.7 vds.transfer.throttle.streams

System Pegasus
Type integer
Default 1
See also vds.transfer.mode, section 8.3 (page 19)
See also vds.transfer.throttle.processes, section 8.6 (page 20)

Whatever the transfer mode specified, at present each uses globus-url-copy (g-u-c) as the underlying
transfer mechanism. g-u-c can open multiple streams to do the ftp data transfer. This property can be used
to set the number of streams that are used to transfer one file by underlying g-u-c. It directly maps to the
-p option of g-u-c.

8.8 vds.transfer.force

System Pegasus
Type boolean
Default false
See also vds.transfer.mode, section 8.3 (page 19)
See also vds.transfer.mode.links, section 8.4 (page 20)

If this is set, the underlying transfer mechanism should use the force option if available while transferring
the files. At present if the vds.transfer.mode is set to multiple and vds.transfer.mode.links to true the force
option would be set, that is used while creating the symbolic links on the execution pools.

8.9 vds.transfer.thirdparty.pools

System Pegasus
Type comma separated list of pools
Default no default
since 1.2.0

By default Pegasus employs the push/pull model of transfer for transferring files in and out of a pool. It
does use the third party transfer option that grid ftp servers provide. This list specifies the list of pools
on which the user wants third party transfers instead of the normal mode. Normally for a push transfer
the source url is file://blah and destination url is gsiftp://blah. However in case of a third party pool both

8 Pegasus In Action 22

the urls would be gsiftp://blah. For all these pools, the transfers are actually scheduled on the submit host
(pool local) in the scheduler universe.

8.10 vds.exitcode.mode

System Pegasus
Type enumeration
Value[0] all
Value[1] none
Value[2] essential
Default none
See also vds.exitcode.arguments, section 8.11 (page 22)

Jobs that are "kickstarted" by a grid launcher report back information about the execution, resource con-
sumption, and - most importantly - the exit code of the remote application. Armed with this knowledge, it
is possible to have DAGMan stop the workflow and create a rescue workflow on remote execution errors.
In "all" mode, each kickstarted job’s invocation record will be parsed by a DAGMan postscript. In "none"
mode, the default, remote failures will not abort the DAG. In "essential" mode, only certain classes of
remote jobs get the ability to abort the workflow, while other, non-essential, classes of jobs (at present the
replica registration jobs) will not have their invocation record abort the workflow.

8.11 vds.exitcode.arguments

System Pegasus
Type string
Default no default
since 1.2.14
See also vds.exitcode.mode, section 8.10 (page 22)

This specifies the arguments by which the exitcode is invoked on the kickstart output of a job. It applies
to all the jobs, for which exitcode is invoked as determined by vds.exitcode.mode property.

8.12 vds.dir.exec

System Pegasus
Type remote directory location string
Default (no default)

This property modifies the remote location work directory in which all your jobs will run. If the path is
relative then it is appended to the exec mount point (old pool configuration) or work directory (new pool
configuration), as specified in the pool config file. If the path is absolute then it overrides the mount point
specified in the pool config file.

8 Pegasus In Action 23

8.13 vds.dir.storage

System Pegasus
Type remote directory location string
Default (no default)

This property modifies the remote storage location on various pools. If the path is relative then it is ap-
pended to the storage mount point specified in the pool.config file. If the path is absolute then it overrides
the storage mount point specified in the pool config file.

8.14 vds.dir.create.mode

System Pegasus
Type enumeration
Value[0] HourGlass
Value[1] Tentacles
Default HourGlass

If the --randomdir option is given to the Planner at runtime, the Pegasus planner ends up adding nodes
that end up creating the random directories at the remote pool sites, before any jobs are actually run. The
two modes end up determining the placement of these nodes and their dependencies to the rest of the
graph.

HourGlass It adds a make directory node at the top level of the graph, and all these concat to a single
dummy job before branching out to the root nodes of the original/ concrete dag so far. So we end
up introducing a classic X shape at the top of the graph. Hence the name HourGlass.

Tentacles This ends up placing the create directory jobs at the top of the graph. However instead of
constricting it to an hour glass shape, this mode links it to all the relevant nodes for which the create
dir job is necessary. It is like that it spreads it’s tentacleas all around. This ends up putting more
load on the DagMan with all the dependencies but removes the restriction of the plan progressing
only when all the create directory jobs have progressed on the remote pools, as in the HourGlass
model.

8.15 vds.lsf.projects

Moved to vds.scheduler.remote.queues, section 8.17 (page 24)

This property name was deprecated, and will eventually be phased out. Please use the new name in the
future.

8 Pegasus In Action 24

8.16 vds.scheduler.remote.projects

System Pegasus
Type list of kv pairs
Default (no default)
Example jazz=PDQ,pnnl=emsl12491

This property allows to set the *project* name that is to be used for each pool. Usually, such project
names are specific to a small set of users, and can not be well set in the pool configuration file. Please
note that the key is the pool handle, and the value is the project name. Setting the project will result in the
generation of an RSL term (project=xxxx) for the matching pool handle.

8.17 vds.scheduler.remote.queues

System Pegasus
Type list of kv pairs
Default (no default)
Example jazz=PDQ,pnnl=emsl12491

This property allows to set the *queue* name that is to be used for each pool. Usually, such queue names
are specific to single users, and can thus not be well set in the pool configuration file. Please note that
the key is the pool handle, and the value is the queue name. The property is applicable to any remote
scheduling system that employs named queues, e.g. PBS or LSF. Setting the queue will result in the
generation of an RSL clause (queue=xxxx) for the matching pool handle.

8.18 vds.scheduler.remote.maxwalltimes

System Pegasus
Type list of kv pairs
Default (no default)
Example jazz=10,pnnl=20

This property allows to set the *walltime* for your jobs on each pool. Max Walltime means the maximum
amount of time a job would run for on a pool. This property is applicable to any remote scheduling
system that employs walltimes like PBS. Setting the walltime will result in the generation of an RSL
clause (maxwalltime=xxxx) for the matching pool handle. Please note that most if all scheduling systems
that use this kill the job if the jobs running time exceed the advertised walltime in the job description.

8.19 vds.pegasus.kickstart-condor

Moved to vds.scheduler.condor.start, section 8.22 (page 25)

8 Pegasus In Action 25

This property name was deprecated, and will eventually be phased out. Please use the new name in the
future.

8.20 vds.pegasus.condor-bin

Moved to vds.scheduler.condor.bin, section 8.23 (page 25)

This property name was deprecated, and will eventually be phased out. Please use the new name in the
future.

8.21 vds.pegasus.condor-config

Moved to vds.scheduler.condor.config, section 8.24 (page 26)

This property name was deprecated, and will eventually be phased out. Please use the new name in the
future.

8.22 vds.scheduler.condor.start

System Pegasus, DAG auto-submit
Type local file location string
Default (no default)
Old name vds.pegasus.kickstart-condor
See also vds.scheduler.condor.bin, section 8.23 (page 25)
See also vds.scheduler.condor.config, section 8.24 (page 26)

This property needs to be set if you intend to submit jobs to Condor from Pegasus itself instead of
stopping after all Condor files are generated. Starting a generated workflow requires to activate con-
dor_submit_dag in the DAG directory. An implementation for the auto-submittor for this option is pro-
vided in ${vds.home}/bin/kickstart-condor

8.23 vds.scheduler.condor.bin

System Pegasus, DAG auto-submit
Type local directory location string
Default (no default)
Old name vds.pegasus.condor-bin
See also vds.scheduler.condor.start, section 8.22 (page 25)
See also vds.scheduler.condor.config, section 8.24 (page 26)

This property needs to be set if you intend to submit jobs to Condor from Pegasus itself instead of stopping
after all Condor files are generated. This property points to the location of the "bin" directory of your local
Condor installation.

8 Pegasus In Action 26

8.24 vds.scheduler.condor.config

System Pegasus
Type local file location string
Default (no default)
Old name vds.pegasus.condor-config
See also vds.scheduler.condor.start, section 8.22 (page 25)
See also vds.scheduler.condor.bin, section 8.23 (page 25)

This property needs to be set if you intend to submit jobs to Condor from Pegasus itself instead of stopping
after all Condor files are generated. This property points to the location where the condor_config file is
stored. Refer to the Condor manual for the default locations of the Condor system.

8.25 vds.scheduler.condor.release

System Pegasus
Type non-negative integer
Default 3

This property determines the number of release attempts that are written into the submit file. Condor will
hold jobs on certain kinds of failures. Many known failing conditions are transient, thus, if the job is
automatically release after a short time, it usually progresses.

8.26 vds.scheduler.condor.remove

System Pegasus
Type non-negative integer
Default 3
See also vds.scheduler.condor.release, section 8.25 (page 26)
Since 1.3.0

This property determines the number of hold attemts that happen before Condor removes the job from the
queue. This value is tied to the number of release attempts. Hence, Pegasus enforces release > remove
>= 0. A value of zero indicates, that the user does not want the job to be removed from the queue. In
that case, no periodic_remove statement would be constructed. If the property is not set, the value of
vds.scheduler.condor.release is used. If both the properties are unset, then the default value of 3 is used.

8.27 vds.scheduler.condor.retry

System Pegasus
Type non-negative integer
Default 3
Since 1.3.0

8 Pegasus In Action 27

This property determines the number of attempts DAGMAN makes to execute a job in case of failure. In
case of deferred planning this can be used to do replanning. A failure during the execution of a partition
can trigger the execution of Pegasus via a prescript, that may result in a different plan for the partition
being generated and executed. Note, this is different from vds.scheduler.condor.release which results in
condor retrying the same job (submit file) when a job goes in HOLD state.

8.28 vds.scheduler.condor.output.stream

System Pegasus
Type Boolean
Value[0] false
Value[1] true
Default true
See also vds.scheduler.condor.error.stream, section 8.29 (page 27)

By default, GASS streams back stdout continuously. In this default mode, it will require additional
filedescriptors on the gatekeeper. Recent versions of Globus and Condor allow the content of stdout
to be streamed back after the job is done. While no content is visible during the execution of the job, it
saves precious gatekeeper resources.

8.29 vds.scheduler.condor.error.stream

System Pegasus
Type Boolean
Value[0] false
Value[1] true
Default true
See also vds.scheduler.condor.output.stream, section 8.28 (page 27)

By default, GASS streams back stderr continuously. In this default mode, it will require additional
filedescriptors on the gatekeeper. Recent versions of Globus and Condor allow the content of stderr to
be streamed back after the job is done. While no content is visible during the execution of the job, it saves
precious gatekeeper resources.

8.30 vds.giis.host

System Pegasus
Type string
Default (no default)
See also vds.pool.mode, section 8.1 (page 17)

8 Pegasus In Action 28

This property needs to be set if you set the vds.pool.mode to xml and you wish to obtain the pool config
information dynamically using MDS along with or without local pool config support files. The property
needs to be set to the hostname and optional port of the GIIS service that is aggregating pool information,
e.g. smarty.isi.edu:2135

8.31 vds.giis.dn

System Pegasus
Type X.400 string
Default (no default)
See also vds.pool.mode, section 8.1 (page 17)

If the vds.giis.host is set, and MDS is used to obtain the pool configuration, the ’distinguished name’ to
contact the GIIS needs to be specified with this property, e.g. "MDS-vo-name=GRIPHYN,o=Grid"

8.32 vds.log4j.log

System Pegasus, LoggerService, Log4j
Type filename
Default (no default)
See also vds.loggerservice.url, section 8.33 (page 28)

If you plan to log the interal RLS queries in Pegasus to a local file using log4j then set the property to the
location of the file you want the log written to. THIS IS AN EXPERIMENTAL FEATURE.

8.33 vds.loggerservice.url

System Pegasus, Ogsa LoggerService
Type URI string
Default (no default)
See also vds.log4j.log, section 8.32 (page 28)

If you plan to log internal RLS queries in pegasus to an OGSA logger service. Set the property to the url
of the logger service. THIS IS AN EXPERIMENTAL FEATURE.

9 Chimera In Action 29

9 Chimera In Action

9.1 vds.log.*

System ChimWarning: 85: Found regular textual paragraph, copying era
Type filename or stdio handle
Default (no default)
Example vds.log.chunk=stderr

The Chimera system has (currently, about to change) a logging system that works with queues and levels.
Each logging Q can be addressed separately, and given either a filename to append log information onto,
"stdout" for standard output, or "stderr" for standard error. You may use the same filename for different
queues.

9.2 vds.verbose

System Chimera
Type flag
Default (not specified)

If the verbose option is specified, the Chimera system will provide maximum logging on all queues. This
is very verbose, but sometimes the easiest way to track an error.

10 Interface To Dagman

The Condor DAGMan facility is usually activate using the condor_submit_dag command. However, many
shapes of workflows have the ability to either overburden the submit host, or overflow remote gatekeeper
hosts. While DAGMan provides throttles, unfortunately these can only be supplied on the command-
line. Thus, the GVDS provides a versatile wrapper to invoke DAGMan, called vds-submit-dag. It can be
configured from the command-line, from user- and system properties, and by defaults.

10.1 vds.dagman.maxpre

System DAGman wrapper
Type integer
Default 20
Document http://www.cs.wisc.edu/condor/manual/v6.6/condor_submit_dag.html

The vds-submit-dag wrapper processes properties to set DAGMan commandline arguments. The argu-
ment sets the maximum number of PRE scripts within the DAG that may be running at one time. If this
option is set to 0, the default number of PRE scripts is unlimited. The GVDS system throttles artificially
to a maximum of 20 PRE scripts.

10 Interface To Dagman 30

10.2 vds.dagman.maxpost

System DAGman wrapper
Type integer
Default 20
Document http://www.cs.wisc.edu/condor/manual/v6.6/condor_submit_dag.html

The vds-submit-dag wrapper processes properties to set DAGMan commandline arguments. The argu-
ment sets the maximum number of POST scripts within the DAG that may be running at one time. If this
option is set to 0, the default number of POST scripts is unlimited. The GVDS system throttles artificially
to a maximum of 20 POST scripts.

10.3 vds.dagman.maxjobs

System DAGman wrapper
Type integer
Default 200
Document http://www.cs.wisc.edu/condor/manual/v6.6/condor_submit_dag.html

The vds-submit-dag wrapper processes properties to set DAGMan commandline arguments. The argu-
ment sets the maximum number of jobs within the DAG that will be submitted to Condor at one time. If
the option is omitted, the default number of jobs is unlimited. The GVDS system throttles artificially to a
maximum of 200 simultaneous jobs that are visible to the Condor system. You may want to raise this bar.

vds.dagman.maxjobs 200

10.4 vds.dagman.nofity

System DAGman wrapper
Type Case-insensitive enumeration
Value[0] Complete
Value[1] Error
Value[2] Never
Default Error
Document http://www.cs.wisc.edu/condor/manual/v6.6/condor_submit_dag.html
Document http://www.cs.wisc.edu/condor/manual/v6.6/condor_submit.html

The vds-submit-dag wrapper processes properties to set DAGMan commandline arguments. The argu-
ment sets the e-mail notification for DAGMan itself. This information will be used within the Condor
submit description file for DAGMan. This file is produced by the the condor_submit_dag. See noti-
fication within the section of submit description file commands in the condor_submit manual page for
specification of value. Many users prefer the value NEVER.

10 Interface To Dagman 31

10.5 vds.dagman.verbose

System DAGman wrapper
Type Boolean
Value[0] false
Value[1] true
Default false
Document http://www.cs.wisc.edu/condor/manual/v6.6/condor_submit_dag.html

The vds-submit-dag wrapper processes properties to set DAGMan commandline arguments. If set and
true, the argument activates verbose output in case of DAGMan errors.

Index

vds.dagman.maxjobs, 30
vds.dagman.maxpost, 30
vds.dagman.maxpre, 29
vds.dagman.nofity, 30
vds.dagman.verbose, 31
vds.db.*.driver, 10
vds.db.*.driver.*, 12
vds.db.*.driver.password, 11
vds.db.*.driver.url, 11
vds.db.*.driver.user, 11
vds.db.pool, 7
vds.db.ptc.schema, 10
vds.db.rc, 8
vds.db.tc, 7
vds.db.vdc.schema, 9
vds.db.vdc.schema.file.store, 10
vds.db.vdc.schema.xml.url, 9
vds.dir.create.mode, 23
vds.dir.exec, 22
vds.dir.storage, 23
vds.exitcode.arguments, 22
vds.exitcode.mode, 22
vds.giis.dn, 28
vds.giis.host, 27
vds.home, 5
vds.home.datadir, 5
vds.home.localstatedir, 6
vds.home.sharedstatedir, 6
vds.home.sysconfdir, 6
vds.log.*, 29
vds.log4j.log, 28
vds.loggerservice.url, 28
vds.lsf.projects, 23
vds.pegasus.condor-bin, 25
vds.pegasus.condor-config, 25
vds.pegasus.kickstart-condor, 24
vds.pool.file, 8
vds.pool.mode, 17
vds.properties, 5

vds.replica.mode, 13
vds.rls.exit, 14
vds.rls.query, 14
vds.rls.query.attrib, 14
vds.rls.url, 13
vds.scheduler.condor.bin, 25
vds.scheduler.condor.config, 26
vds.scheduler.condor.error.stream, 27
vds.scheduler.condor.output.stream, 27
vds.scheduler.condor.release, 26
vds.scheduler.condor.remove, 26
vds.scheduler.condor.retry, 26
vds.scheduler.condor.start, 25
vds.scheduler.remote.maxwalltimes, 24
vds.scheduler.remote.projects, 24
vds.scheduler.remote.queues, 24
vds.schema.dax, 7
vds.schema.ivr, 7
vds.schema.vdl, 6
vds.site.selector, 15
vds.site.selector.env.*, 16
vds.site.selector.keep.tmp, 17
vds.site.selector.mode, 15
vds.site.selector.path, 16
vds.site.selector.timeout, 16
vds.tc.file, 8
vds.tc.mode, 18
vds.transfer.force, 21
vds.transfer.mode, 19
vds.transfer.mode.force, 20
vds.transfer.mode.links, 20
vds.transfer.thirdparty.pools, 21
vds.transfer.throttle.processes, 20
vds.transfer.throttle.streams, 21
vds.user.properties, 5
vds.verbose, 29

	Introduction
	Basics
	vds.home

	Directory Location Properties
	vds.properties
	vds.user.properties
	vds.home.datadir
	vds.home.sysconfdir
	vds.home.sharedstatedir
	vds.home.localstatedir

	Simple File Location Properties
	vds.schema.vdl
	vds.schema.dax
	vds.schema.ivr
	vds.db.pool
	vds.db.tc
	vds.pool.file
	vds.tc.file
	vds.db.rc

	Chimera Vdc Access
	vds.db.vdc.schema
	vds.db.vdc.schema.xml.url
	vds.db.vdc.schema.file.store
	vds.db.ptc.schema
	vds.db.*.driver
	vds.db.*.driver.url
	vds.db.*.driver.user
	vds.db.*.driver.password
	vds.db.*.driver.*

	Pegasus Replica Management Properties
	vds.replica.mode
	vds.rls.url
	vds.rls.exit
	vds.rls.query
	vds.rls.query.attrib

	Pegasus Site Selection Properties
	vds.site.selector.mode
	vds.site.selector
	vds.site.selector.path
	vds.site.selector.env.*
	vds.site.selector.timeout
	vds.site.selector.keep.tmp

	Pegasus In Action
	vds.pool.mode
	vds.tc.mode
	vds.transfer.mode
	vds.transfer.mode.links
	vds.transfer.mode.force
	vds.transfer.throttle.processes
	vds.transfer.throttle.streams
	vds.transfer.force
	vds.transfer.thirdparty.pools
	vds.exitcode.mode
	vds.exitcode.arguments
	vds.dir.exec
	vds.dir.storage
	vds.dir.create.mode
	vds.lsf.projects
	vds.scheduler.remote.projects
	vds.scheduler.remote.queues
	vds.scheduler.remote.maxwalltimes
	vds.pegasus.kickstart-condor
	vds.pegasus.condor-bin
	vds.pegasus.condor-config
	vds.scheduler.condor.start
	vds.scheduler.condor.bin
	vds.scheduler.condor.config
	vds.scheduler.condor.release
	vds.scheduler.condor.remove
	vds.scheduler.condor.retry
	vds.scheduler.condor.output.stream
	vds.scheduler.condor.error.stream
	vds.giis.host
	vds.giis.dn
	vds.log4j.log
	vds.loggerservice.url

	Chimera In Action
	vds.log.*
	vds.verbose

	Interface To Dagman
	vds.dagman.maxpre
	vds.dagman.maxpost
	vds.dagman.maxjobs
	vds.dagman.nofity
	vds.dagman.verbose

	Index

